Электронная микроскопия

Фокусируемый ионный пучок сокр., ФИП

Широко используемая методика в материаловедении для локального анализа, напыления и травления материалов. Установка для ионного травления напоминает растровый электронный микроскоп. В электронном микроскопе используется пучок электронов, тогда как в ФИП применяют более тяжелые частицы — ионы (с большей кинетической энергией). Бывают установки, использующие оба вида пучков. Не следует путать ФИП с устройством для литографии, где также используется ионный пучок, но слабой интенсивности, а в травлении основным является свойства самого резиста.

В отличие от электронного микроскопа, ФИП «разрушает» образец. При ударе ионов галлия о поверхность образца, они «вырывают» атомы, из которых состоит образец. В ходе обработки поверхности атомы галлия также имплантируются в глубину образца на несколько нанометров. Поверхность образца после этого приходит к аморфному состоянию.

ФИП может обрабатывать поверхность образца очень тонко — возможно удалить слой с поверхности на глубину равную атомному размеру, при этом совершенно не затрагивая следующий слой. Шероховатость поверхности образца после обработки ионным пучком составляет менее микрона.

Микроскопия, электронная просвечивающая сокр., ПЭМ

Разновидность электронной микроскопии, в которой для получения увеличенного изображения или дифракционной картины используются электроны, прошедшие через образец.

Описание

Для исследований методом ПЭМ обычно используют образцы толщиной менее 500 нм (чаще менее 100–200 нм). Чем больше толщина образца, тем больше должно быть ускоряющее напряжение пучка электронов. Разрешение ПЭМ составляет десятки нанометров, однако существуют модификации метода ПЭМ, для которых разрешение может достигать 0,2 нм, а при применении специальных корректоров сферической абберации даже 0,05 нм. Эти разновидности часто рассматривают как самостоятельный метод исследования — просвечивающая электронная микроскопия высокого разрешения (high resolution transmission electron microscopy — HREM, HRTEM).

Электронный микроскоп с использованием дополнительных детекторов позволяет реализовать различные методики микроанализа образцов — спектроскопию энергетических потерь электронов, рентгеноспектральный микроанализ и др.

Электронная микроскопия

Электронная микроскопия позволяет с помощью электронного микроскопа исследовать микроструктуру тел при увеличениях до многих сотен тысяч раз (вплоть до атомно-молекулярного уровня), изучить их локальный состав и локализованные на поверхностях или в микрообъёмах тел электрические и магнитные поля (микрополя). Кроме этого, электронная микроскопия - это самостоятельное научное течение, направленное на:

  • усовершенствование и разработку новых электронных микроскопов и других корпускулярных микроскопов (например, протонного микроскопа) и приставок к ним;
  • разработку методик препарирования образцов, исследуемых в электронных микроскопах;
  • изучение механизмов формирования электроннооптических изображений;
  • разработку способов анализа разнообразной информации (не только изображений), получаемой с помощью электронных микроскопов.
  • Некоторые методы электронной микроскопии рассмотрены в разделе "Методика электронной микроскопии".

    К сожалению, электронная микроскопия ограничена в своих возможностях по исследованию и диагностике поверхности. Несмотря на огромные плюсы, которые она имеет, существует несколько неоспоримых недостатков. К таковым следует отнести, в первую очередь, необходимость достаточного вакуума для получения относительно хорошего разрешения, отсутствие возможности просмотра больших образцов, достижение атомного разрешения в критических для поверхности условиях, когда энергия пучка электронов достигает величины до 300 КэВ.

    Сканирующий электронный микроскоп сокр., SEM

    прибор класса электронный микроскоп, предназначенный для получения изображения поверхности объекта с высоким (до 0,4 нанометра) пространственным разрешением, также информации о составе, строении и некоторых других свойствах приповерхностных слоёв. Основан на принципе взаимодействия электронного пучка с исследуемым объектом.

    Современный SEM позволяет работать в широком диапазоне увеличений приблизительно от 10 крат (то есть эквивалентно увеличению сильной ручной линзы) до 1 000 000 крат, что приблизительно в 500 раз превышает предел увеличения лучших оптических микроскопов.

    Рентгеновская спектроскопия

    С помощью пучка электронов (в электронных микроскопах) или рентгеновских лучей (в рентгеновских флуоресцентных анализаторах) атомы исследуемого образца возбуждаются, испуская характерное для каждого химического элемента рентгеновское излучение. Исследуя энергетический спектр такого излучения, можно сделать выводы о качественном и количественном составе образца.

    Метод энергодисперсионной рентгеновской спектроскопии может использоваться при исследовании объектов в сканирующем электронном микроскопе или трансмиссионном электронном микроскопе, где производится исследование объекта с помощью сфокусированного высокоэнергетического пучка электронов.

    В камере микроскопа создают высокий вакуум (10−7 мБар) с целью минимизации взаимодействия электронов с молекулами воздуха. Детектор рентгеновского излучения требует охлаждения, которое обычно производится либо дьюаром с жидким азотом, либо устройством, базирующемся на эффекте Пельтье.

    При работе электронного микроскопа пучок электронов выходит из источника — электронной пушки — и ускоряется высоким напряжением. При попадании на объект часть электронов рассеивается в зависимости от порядкового номера элемента и его окружения в кристаллической структуре, часть возбуждает атомы вещества объекта, вызывая при этом эмиссию характеристического излучения. Анализируя энергетический спектр эмитированного рентгеновского излучения, возникающего при взаимодействии электронного пучка и атомов объекта, с помощью детектора (кристаллы Si с примесями Li) электронного микроскопа, дополнительно изучают также и его состав.

    Анализ отдельных максимумов рентгеновского спектра по их расположению (длина волны одного максимума эмиссии определённого элемента) и интенсивности проводят также в родственном методе дисперсионной рентгеновской спектроскопии по длине волны (WDS), имеющем на порядок более высокую чувствительность и спектральную разделительную способность, однако менее экспрессном.